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1 Introduction
1.1 Objectives
The purpose of this document is to introduce you how to use the MOSAICgrowth application
(https://mosaic.univ-lyon1.fr/growth). This application is based on the R software1 and especially
the rjags library (version 4.10)2, to provide a dose-response (DR) analysis of growth toxicity under a
Bayesian framework. MOSAICgrowth is developed as an R-Shiny interface (version 1.5.0)3.

1.2 Context
The MOSAICgrowth application is a turn-key web tool providing a dose-response (DR) analysis of growth
toxicity test data under a Bayesian framework, including an estimation of the 𝑥% effective toxicity value,
that can be an 𝑥% effective rate (ER𝑥), an 𝑥% effective concentration (EC𝑥) or any other expression of
your choice. For clarity reasons, we will use the abbreviation ER𝑥 in the application. Growth measurement
might be any quantitative continuous variable describing the growth of organisms (e.g., shoot length and dry
weight for plants). This tool makes it possible to analyse one single or multiple data set(s) and to get various
ouputs, such as a summary table of ER𝑥 estimates. This summary table of ER𝑥 estimates includes not only
medians and 95% credible intervals, but also censored ER𝑥 values accounting for their uncertainty compared
to the range of tested concentrations. These censored ER𝑥 values can be used for future SSD analyses in the
MOSAICSSD application https://mosaic.univ-lyon1.fr/ssd. More details about the underlying modelling and
the process of censoring can be found in the vignette.

The MOSAICgrowth application also provides a prediction tool for growth data. This tool first allows the
users to simulate a DR curve for given point values of parameters and chosen concentrations according to a
planned experiment, but also to propagate the parameter uncertainty from a previous DR analysis in order
to predict a DR curve for growth for a new range of concentrations. Such a tool can be helpful in designing
future experiments for a given species/compound combination.

1.3 Installation
If you are using the web interface (https://mosaic.univ-lyon1.fr/growth), you don’t need to install anything.

However, if you want to run the R script (downloadable from the application) by yourself, you need to install:

• the R software1. Refer to https://cran.r-project.org/ to proceed.
• the JAGS software2. Refer to http://sourceforge.net/projects/mcmc-jags/ to proceed.
• the rjags package2. You can install it directly from the R software > Tools > Install Packages >

rjags or from the CRAN website http://cran.r-project.org/web/packages/rjags/index.html.
• Others R packages necessary to run the application: tidyverse, gridExtra, ggmcmc, GGally.
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Here is an example of the R code to install the required packages:

if(is.element('rjags', installed.packages()[,1]) == FALSE)

{install.packages('rjags')}

if(is.element('tidyverse', installed.packages()[,1]) == FALSE)

{install.packages('tidyverse')}

if(is.element('gridExtra', installed.packages()[,1]) == FALSE)

{install.packages('gridExtra')}

if(is.element('ggmcmc', installed.packages()[,1]) == FALSE)

{install.packages('ggmcmc')}

if(is.element('GGally', installed.packages()[,1]) == FALSE)

{install.packages('GGally')}
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2 Step 1: Data uploading
When using MOSAICgrowth, the first step is to upload input data (Fig. 1):

Figure 1. Data uploading and user information to enter.

2.1 Format
You can upload your own data (click on ‘Load file(s)’) by taking care about the format specification of your
file. MOSAICgrowth expects to receive data as a tabular .txt file. Each line of the table corresponds to an
exposure concentration of the contaminant for a given time point and a growth measurement. The table
must contain the three following columns, with exact header names (the order of column does not matter):

• ‘time’: the time point of the measurement;
• ‘growth’: the dose of the contaminant;
• ‘conc’: the measured growth data of the organism.

If required, you can add a column which contains the replicates, as follows:

• ‘replicate’: a number or a string that is unique for each replicate.

Here is an example:

Table 1. Example of first lines of a data set ready to be uploaded.

replicate time conc growth
1 21 0 2.88
2 21 0 3.96
3 21 0 3.25
4 21 0 3.29
5 21 0 3.90
6 21 0 3.15

In MOSAICgrowth, you can upload one data set or several ones to simultaneously perform DR analyse for a
set of species. This may be the preferred option in the perspective of an SSD analysis.
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2.2 Example data
Some example files are provided in order to test the application and better appropriate the functioning4-7:
- chlordan-daphnia.txt4: exposure of Daphnia magna to chlordane (6 concentrations including the
control, expressed in 𝜇𝑔/𝐿) at day 21. Length data is collected (expressed in mm).
- cadmium-daphnia.txt5: exposure of Daphnia magna to cadmium (5 concentrations including the
control, expressed in 𝜇𝑔/𝐿) during 21 days. 10 time-points and 4 replicates of 10 animals. Length data is
collected (expressed in mm).
- copper-daphnia.txt5: exposure of Daphnia magna to copper (5 concentrations including the
control, expressed in 𝜇𝑔/𝐿) during 21 days. 16 time-points and 3 replicates of 20 animals. Length data is
collected (expressed in mm).
- zinc-daphnia.txt5: exposure of Daphnia magna to zinc (4 concentrations including the control,
expressed in 𝜇𝑔/𝐿) during 21 days. 15 time-points and 3 replicates of 20 animals. Length data is collected
(expressed in mm).
- subst01-lymnaea.txt6: exposure of snails to a given substance (6 concentrations including the control,
expressed in 𝜇𝑔/𝐿) at day 56. Length of shell is collected (expressed in mm).
- plant01.txt to plant10.txt7: plant species 1 to 10 exposed to a given product (the same one for
other plants of the available examples in the application) during 21 days for the vegetative vigour test.
You can try MOSAICgrowth with these example data sets (Fig. 2):

Figure 2. Examples available in MOSAICgrowth.

For each example data set, you can download data and the report.
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2.3 Data visualization
In case you upload several data sets, select the one for which you want to visualize the data. Its name is
reminded at the top of the data visualization section (Fig. 3).

When the upload is complete, you have the possibility to change the 𝑥- and 𝑦-axis labels. Then you have to
manually select the exposure, growth and time units. These inputs will be used for plotting results.
There are two types of visualizations on the right in this section: plot (default) and table (Fig. 3 and 4),
which allow you to check if the file is correctly uploaded. For the table visualization, you can select to show
10, 25, 50 or 100 entries per page.

If the inputs are correct, you can move on ’Dose-response analysis’ section.

Figure 3. Plot of the uploaded data for the selected file.

Figure 4. Table of the uploaded data for the selected file.
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3 Step 3: Results
You will find at the end of this user-guide an appendix (section 8) which gathers other types of results
which can be obtained with other data sets and how to interpret them.
To illustrate the result section, we will use the example file ‘plant07.txt’, plant species 7 exposed to
an herbicide during 21 days of a vegetative vigour test. Shoot dry weight data (expressed in mm) was collected.

At first, select the data set(s) on which you want to perform DR analysis and ER𝑥 calculation (Fig. 5).
Then, select the target time. If multiple data sets are selected, be aware that a common target time is
required to perform a similar DR analysis for each of them.

Figure 5. Selection of the data set(s) before ER𝑥 and DR analysis.

When the desired data sets are selected, click on ’Run analysis’. Calculations can take a while to perform.

3.1 ER𝑥 estimate
As a first result, we provide the ER𝑥 value for the selected 𝑥 by the user. After the selection of the 𝑥 value(s)
(choice within 5, 10, 25, 50, 75, 90), you can select one or more data sets to calculate the corresponding ER𝑥.
Then click on ’calculate ERx’ and ’Display all ERx’ (Fig. 6). In the example on Fig. 6, the rate that
gives 50% effect (growth inhibition, ER50) is 683.21 [509.36; 950.76] ml prod./ha.

ER𝑥 estimates are summarized in a table of ER𝑥 estimates for all performed dose-response analyses (Fig.
6). This output provides median values and the 95% credible interval for the selected 𝑥 value(s) and file(s).
‘Censored Value’ in the table stands for censored ER𝑥 according to the criterion based on the ratio of
probabilities and a decision threshold 𝑇 equal to 0.5. For more details about censored ER𝑥, please consult
the vignette).
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Figure 6. Selection of inputs to calculate and display the ER𝑥.

3.2 Dose-response analysis
The results of the DR analysis for the example data set are displayed on the left of Fig. 7, reminding the
target time. Three outputs are given: DR curve, parameter estimates and ER𝑥 estimates.

3.2.1 DR curve

We first provide the fitted dose-response curve superimposed to the observations (Fig. 7, black dots): the
orange plain line is the median curve, the gray zone the uncertainty band delimited by 2.5% and 97.5%
quantiles in orange dotted lines. You have the possibility to plot the results according a logarithm scale for
the 𝑥-axis.
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Figure 7. Measured (black dots) and predicted growth data according to the contaminant rate. Median
predictions are symbolized by the orange plain line and the uncertainty bands by the gray zone which is
delimited by the 2.5% and 97.5% quantiles in orange dotted lines.

3.2.2 Parameter estimates

We also provide parameter estimates. From the joint posterior distribution, we can obtain the marginal
posterior distribution for each parameter, which can be summarized by the median and the 95% credible
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intervals (Table 2).

Table 2. Example of parameters medians (50% quantile) with their 95% credible intervals (2.5% - 97.5%
quantiles from the joint posterior distribution).

median Q2.5 Q97.5
b 0.6317317 0.5006001 0.7925764
d 3.4633903 3.2855732 3.6490226
e 682.3091823 509.4969732 957.3108039
sigma 0.3106841 0.2607767 0.3810995

Where:

• 𝑏 is the shape parameter (the “slope” of the dose-response curve);

• 𝑑 corresponds to growth in control data (i.e. in absence of contaminant);

• 𝑒 corresponds to the ER50 and sigma is the standard deviation of growth data.

If you want more information on the meaning of these parameters, we invited you to read the vignette.

3.2.3 ER𝑥

If an 𝑥 value is chosen and the ER𝑥 calculated, the summary and the density of the ER𝑥 probability
distribution are displayed (Fig. 8).

‘CensoredValue’ in the provided table (Fig. 8) stands for censored ER𝑥 according to the criterion
based on the ratio of probabilities and a decision threshold 𝑇 equal to 0.5. For more details about the
censored ER𝑥, please consult the vignette.
The black curve represents the posterior probability distribution of the ER𝑥. The two solid vertical lines
delimit the 95% credible interval of the ER𝑥 estimate and the dashed vertical line corresponds to the value of
the highest tested rate (max_rate). The orange surface represents the probability for the ER𝑥 to lie between
Q2.5 and max_rate. The ratio of probabilities mentioned above is the ratio of the probability that the ER𝑥
lies within Q2.5 and max_rate over the probability that the ER𝑥 lies within Q2.5 and Q97.5. It equals to
the orange surface divided by 0.95.
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Figure 8. Selection of inputs to calculate and display the ER𝑥.
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3.3 Goodness-of-fit criteria
Goodness-of-fit criteria are given below in our prioritised order; the PPC and the prior-posterior comparison
are the most important to check; if they do not correspond to the expectation, you must consider your results
with an even more particular attention. As an indication, if at least two criteria are fulfilled, the results
obtained can be considered as good enough.
We suggest that you refer to the appendix at the end of the document for more details (section 8), in
particular to know to deal with results far from the expected ones.

3.3.1 Posterior Predictive Check (PPC)

The PPC shows the observed values against their corresponding estimated predictions (black dots), along
with their 95% credible interval (vertical segments). If the fit is correct, we expect to see 95% of the data
within the intervals. Ideally, observations and predictions should coincide, so we would expect to see black
dots along the first bisector 𝑦 = 𝑥 (plain black line). The 95% credible intervals are coloured in green if
they overlap this line, in red otherwise. In the following example (Fig. 9), 98.3% of the measured data
(𝑛 = 58/59) are in the 95% credible intervals of their predictions.
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Figure 9. Example of a PPC: predicted against measured concentrations (black dots) and predicted 95%
credible intervals (vertical green and red segments).

3.3.2 Prior and posterior distributions

The prior and posterior distributions are illustrated in Fig. 10. The prior distribution is represented by the
gray area and the posterior distribution by the orange area. The accuracy of the model parameter estimation
can be visualized by comparing prior and posterior distributions: the overall expectation is to get a narrower
posterior distribution compared to the prior one, what reflects that data contributed enough to precisely
estimate parameters.

In the given example (Fig. 10), marginal posterior distributions for 𝑑, 𝑏, 𝑒 and 𝜎 are narrower
(orange area) than their respective prior distributions (grey area).

11



0
1
2
3
4

0.0 2.5 5.0 7.5 10.0
d

de
ns

ity
0
2
4
6
8

−2 −1 0 1 2
log10b

de
ns

ity

0

2

4

6

1 2 3 4
log10e

de
ns

ity

0

5

10

0 1 2 3 4 5
sigma

de
ns

ity

Figure 10. Example of prior (gray) and posterior (orange) probability distributions for each parameter.

3.3.3 Correlations between parameters

It is also recommended to check for correlations between parameters (Fig. 11).

Correlations between parameters are visualized by projecting the joint posterior distribution in a plot matrix
with planes of parameter pairs (Fig. 11, lower triangular elements), marginal posterior distribution of each
model parameter (Fig. 11, diagonal), and Pearson correlation coefficients (Fig. 11, upper triangular
elements). Correlations are expected to be low (reflected by “potatoid” shapes of density lines in orange,
e.g., 𝑙𝑜𝑔10𝑏 and 𝑙𝑜𝑔10𝑒 in Fig. 11); a leaning elliptical shape translates high correlations (positive if
leaning to the right, negative if leaning to the left).

If two parameters are highly correlated, this means that the estimate obtained for one of these two
parameters will strongly influence the estimate of the other parameter. This high correlation is often due to
the model structure itself, but can also come from data if they are not in accordance with the requirements
of the model fitting process.

3.3.4 Potential Scale Reduction Factors (PSRF)

Convergence of the Monte Carlo Markov Chain (MCMC) can be checked with the Gelman-Rubin diagnostic
expressed with the potential scale reduction factor (PSRF). Approximate convergence is diagnosed when the
PSRF is close to 1.00 (Fig. 12)8.

In the example on Fig. 12, the PSRF is equal to 1 for each model parameter, thus the con-
vergence of the MCMC was correctly achieved for the used number of iterations when fitting the
model.

3.3.5 Deviance Information Criterion (DIC)

This criterion, denoted DIC, is a penalized deviance statistics accounting for the number of parameters for
use in model comparison fitted on a same data set. Models with lower DIC values will be preferred9. DIC
value can be negative. However, DIC value itself is not important, what matters is the difference between
two DICs what will determine which model is the most appropriate to choose.
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3.3.6 Traces of MCMC iterations

A traceplot is also an essential plot for assessing convergence and diagnosing of MCMC. It shows the time
series of the sampling process leading to the posterior distribution. Different colours are used for each
of the chains (here three) to assess within-chain variability. The user must check whether all MCMC
converge towards the same distribution limit (overlapping of the chains). This can be verified visually
by observing the simulated values for each node of interest as a function of the number of iterations (Fig. 13).

In the following example, the three MCMC overlap and converge towards the same distribution
limit for each parameter. Thus, the algorithm has suitably converged.
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4 Step 4: Downloads
In MOSAICgrowth, you can download the following documents from the ’downloads’ section:

• Full report (.pdf, .html and .doc): a report providing results on all performed dose-response analyses.

• Joint posterior distribution (.txt and .csv): a file containing a joint posterior distribution of
parameters (a sample of parameter estimates) for a single data set.

• Output ER𝑥 (.txt and .csv): a file containing a summary table of ER𝑥 estimates for all data sets.

• Output ER𝑥 for MOSAICSSD (.txt): a file containing a set of censored ER𝑥 values expressed
in two columns. The first column is for the lower bounds of the censored ER𝑥 values and the second
column for higher bounds. You can upload this .txt file in the MOSAICSSD application to fit a species
sensitivity distribution (SSD) and get an HC𝑝 estimate.

• Predicted data(.txt and .csv): a file containing predicted growth data as a function of contaminant
rate. The file allows to plot a dose-response curve with your favourite software, as you can see in our
application.

• R script(.txt): an R script allowing to reproduce previous analyses.

• Single report (.pdf, .html and .doc): a report providing results on a single dose-response analysis.
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5 Step 5: Prediction tool
The MOSAICgrowth application also provides a prediction tool for growth data (’Prediction tool’ section).

• This tool allows interactive simulations of a dose-response model based on a three-parameters
log-logistic function to describe the dose-response relationship between a contaminant and a growth
measurement (see vignette for more details).

• This tool also allows the users to propagate the parameter uncertainty from a previous DR analysis
into the prediction of a DR curve for growth with a new range of concentrations.

Such a tool can be helpful in designing future experiments for a given species/compound combination.

The first step is to enter concentration values separated by a semi-colon. You can try with this example
(Fig. 14): 40; 80; 160; 320; 640. Then, you have to choose if parameters are distributed or not:

• If not, you have to enter a single value of your choice for each parameter (𝑑, 𝑙𝑜𝑔10𝑏 and 𝑙𝑜𝑔10𝑒, Fig.
14).

Figure 14. Selection of inputs to perform predictions and corresponding results.

• If parameters are distributed, you can choose a joint posterior distribution which comes directly from a
previous dose-response analysis performed in MOSAICgrowth (Fig. 15) or from a .txt file (Fig. 16).
The file should be a tabular .txt file and contain four columns with headers (“d”, “log10b”, “log10e”,
“sigma”). Such a file may have been saved after running MOSAICgrowth application.

Results of the prediction tool for growth data are visualized on the right. You have the possibility to ask for
a log scale for 𝑥-axis at the bottom right of the plot.
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Figure 15. Selection of inputs when parameters are distributed and obtained from a previous DR analysis.

Figure 16. Selection of inputs when parameters are distributed and uploaded from a .txt file.
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7 Glossary
Dose-Response (DR): describes the magnitude of the response of an organism, as a function of exposure
(or doses) to a stimulus or stressor (usually a chemical) after a certain exposure time.

Effective Concentration (EC𝑥): the concentration that gives 𝑥 % of effect (EC𝑥).

Effective Rate (ER𝑥): the rate that gives 𝑥 % of effect (ER𝑥).

Hazardous Concentration (HC𝑝): hazardous concentration for 𝑝 % of the species.

Monte Carlo Markov Chain (MCMC): A method which comprise a class of algorithms for sampling
from a probability distribution. By constructing a Markov chain that has the desired distribution as its
equilibrium distribution, one can obtain a sample of the desired distribution by recording states from the chain.

Potential Scale Reduction Factor (PSRF): Gelman-Rubin diagnostic to check the convergence
of the MCMC.

Species Sensitivity Distribution (SSD) analysis: an approach to define safe levels for toxic
compounds in an ecosystem. It is based on the assumption that species sensitivity to a given contaminant
can be described by a probability distribution estimated from toxicity experiments.
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8 Appendix: a guide in the interpretation of results
In practice, you may encounter situations where the results are not ideal, like with the example file ‘plant01.txt’.
This appendix will allow you to better interpret the results in such cases. For the goodness-of-fit criteria, we
suggest you to have at least two good criteria to consider analysis given by MOSAICgrowth as receivable.

8.1 ER𝑥

As illustrated for the ER50 on Fig. 17; the density of the ER𝑥 probability distribution can be bimodal
rather to be unimodal as in ideal situations. If at least two of the other criteria are validated, this can be
disregarded. If not, your experimental data could be not sufficient to performed ER𝑥 calculations.

Figure 17. Example of a bimodal probability distribution of the ER𝑥.

8.2 Dose-response curve
As illustrated in Fig. 18, almost no effect was observed at 21 days, resulting in a large 95% credible band
around growth predictions when plotted against the contaminant rate. It is an information to consider
when you will interpret results because this large uncertainty will propagate to all the other model outputs,
including the ER𝑥 (Fig. 17).
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Figure 18. Measured (black dots) and predicted growth data of the organism versus contaminant rate.
Median predictions are symbolized by the orange plain line and the uncertainty bands by the gray zone which
is delimited by the 2.5% and 97.5% quantiles in orange dotted lines.
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8.3 Parameter estimates
Large 95% credible intervals can sometimes be obtained for some parameters, especially for parameter
𝑏 (Table 3). Such a situation leads to non precise estimate of the corresponding parameters, what can
compromise their use for predictions. This can be explained by the few experimental data or because no effect
is observed in your experiment. Thus, it is an information to consider when you will interpret the results.

Table 3. Example of parameter medians (50% quantile) with large 95% credible intervals (2.5% - 97.5%
quantiles).

median Q2.5 Q97.5
b 0.63 0.01 63.21
d 0.27 0.19 0.38
e 878.93 74.25 2077.29
sigma 0.08 0.06 0.11

8.4 PPC
If the fit is correct, it is expected to get 95% of the data within the 95% credible intervals of their predictions.
So, if the range of the percentage of data within the credible intervals is between 92 and 96%, calculations and
predictions can be considered as good enough. If the percentage is under 92%, calculations and predictions
are considered as underestimated. If the percentage is upper 96%, calculations and predictions are considered
as overestimated.

On Fig. 19, you can see a counter-example with large uncertainties of the model predictions leading to
100% of the data within there credible intervals.
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Figure 19. Example of a PPC where there is an overestimation of the model predictions.

8.5 Prior and posterior distributions
We remind you that prior distributions are defined by default to be the most generic as possible.
However, it can happen that your data would require other prior distributions (e.g., inspired by literature
or by a previous study leading to parameters estimations outside of the default value as used in MOSAICgrowth).
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The accuracy of the model parameter estimation can be visualized by comparing prior and poste-
rior distributions: the overall expectation is to get a narrower posterior distribution compared to the prior
one, what reflects that data contributed enough to precisely estimate parameters.
If one of the posterior distribution for a model parameter has bounds close to the lower or the upper bound
of the priors distributions (e.g. 𝑙𝑜𝑔10𝑏 ≃ −2 or 𝑙𝑜𝑔10𝑏 ≃ 2), then the prior distribution may be not well
defined. If a bimodal distribution is observed for one parameter, as illustrated for 𝑑 on the top left of Fig.
20, then the inference process needs to be questioned. Conversely, the fit can be considered as correct if you
obtain prior and posterior distributions as illustrated on the bottom of Fig. 20.
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Figure 20. Questionable posterior distribution on the top panel, and a posterior distribution as expected at
the bottom panel.

In MOSAICgrowth, it is not possible to change the prior distributions of parameters directly in the application.
To do this, we suggest you to download the R code and to change the prior distributions directly in the R
software. We remind you that to define the prior distributions you should not have a look at your data, but
only on previous experiments, literature data, or expert knowledge.

8.6 Correlations between parameters
If a high correlation is obtained between two parameters (e.g., more than 0.7 or less than -0.7 for the Pearson
correlation coefficient), it is an information to consider, not necessarily a bad result. It means that the
estimate obtained for one of these two parameters will strongly influence the estimate of the other one (for
example, 𝑑 and 𝑙𝑜𝑔10𝑏 are anti-correlated in Fig. 21). Such an high correlation may be due to the model
structure itself so that it cannot be avoided.

Sometimes, you may get a bimodal posterior distribution for one or several parameters what translates
into a double maximum on density plots (parameter 𝑑 in Fig. 21). This may be due to not enough
large priors. Indeed, to make the application as global as possible, we defined priors for each parameter
the most global as possible. However, depending on the experimental conditions, the parameters may not
be really included within the chosen range of values. In such a case, we recommend you to contact us
sandrine.charles@univ-lyon1.fr if you are not experimented with Bayesian inference and R software.

8.7 PSRF
This criterion must be as close as possible to 1 for each model parameter to ensure that the between-chain
variability is small compared to the within-chain variability. Based on our experience, from a value of 1.03,
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Figure 21. Example of parameter correlations.
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the results should be questioned. Most often, such a case appears when priors are not well defined or when
the data do not contain enough information. One of the solution may be to increase the number of iterations
in the MCMC by using the R script directly.

8.8 DIC
The DIC is not criterion to consider to check the goodness-of-fit itself. However, it is crucial to consider when
two models or more are compared after having been fitted on a same data set.

8.9 Traces of MCMC
You must check whether the MCMC converge towards the same distribution limit (overlapping of the chains).
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