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This document includes two parts. The first part describes the model used in the MOSAICgrowth application
to analyse the toxic effect of a contaminant on growth-type data. The second part describes how to account
for the uncertainty on the 𝑥% effective concentration or rate (EC𝑥 or ER𝑥) in order to adequately censor it
for future (species sensitivity distribution) SSD analyses. The EC𝑥/ER𝑥 is the concentration resulting in 𝑥%
of inhibition compared to the organism growth in the control.
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1 Dose-response analysis of growth inhibition toxicity tests
1.1 Growth inhibition toxicity tests
In a growth inhibition toxicity test, organisms are exposed to a series of concentrations / rates of a contaminant
over a period of time and the growth data (such as length, weight of organisms, …) is collected at given time
points during exposure. In the end, a growth data set is collected. For a chosen time point, observations can
be described as {𝑋𝑖, 𝑌𝑖}, where 𝑋𝑖 are the tested concentrations / rates, and 𝑌𝑖 the growth measurements.

1.2 Dose-response modelling
The dose-response model is defined as follows. Assuming that 𝑌𝑖 is normally distributed with mean 𝜇 and
standard deviation 𝜎, and that the mean 𝜇 is defined as a function 𝑓 of the contaminant concentration /
rate, we obtain:

𝑌𝑖 ∼ 𝒩(𝑓(𝑋𝑖), 𝜎2)
There may be various possibilities for 𝑓. In the MOSAICgrowth application, we assume a three-parameter
log-logistic function for 𝑓:

𝑓(𝑥) = 𝑑
1 + (𝑥

𝑒 )𝑏

where 𝑏, 𝑑 and 𝑒 are positive parameters. Parameter 𝑏 is the shape parameter (the “slope” of the dose-response
curve, corresponding to the effect intensity of the contaminant), 𝑑 corresponds to growth in control data (i.e.,
in absence of contaminant) and 𝑒 corresponds to the EC50/ER50.

1.3 Bayesian inference
The Bayesian approach considers that data are fixed and that the parameters are unknown random variables
following a probabilistic distribution. These results in the following practical implications: (i) the Bayesian
process optimises the probability of parameter vector 𝜃 given the data set Y used for calibration (the
so-called posterior distribution) not only the likelihood (see below); (ii) there is a need to provide reasonable
prior information, then updating this information by accounting for the data. Below is a short introduction
to Bayesian principles1.

In short, the Bayesian approach requires the following steps:
• Choose the prior distributions on parameters based on previous results, literature or expert knowledge
(without looking at the data to fit): P(𝜃);
• Define the probabilistic model from the data, that is the random variable whose data would be one
realisation assuming known values of parameters, namely the likelihood: P(Y ∣ 𝜃);
• Calculate the joint posterior distribution of the parameters given the data via the Bayes formula:
P(𝜃 ∣ Y);
• Provide statistical summaries of parameter estimates (namely, appropriate quantiles);
• Get any function of the parameter estimates as posterior probability distribution, like for example
EC𝑥/ER𝑥 calculations or predictions of new observations.

Basic principles
The keystone of the Bayesian approach is the Bayes formula:

P(𝜃 ∣ Y) = P(𝜃)P(Y ∣ 𝜃)
P(Y)
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where Y are the observed data; P(𝜃 ∣ Y) is the joint posterior distribution of parameter vector 𝜃; P(Y ∣ 𝜃)
is the likelihood of the data given the parameters; P(𝜃) is the joint prior distribution of parameter vector
𝜃. Given that P(Y) is known and fixed, it is often not considered as it does not depend on 𝜃 and will not
influence the posterior distribution. Hence:

P(𝜃 ∣ Y) ∼ P(𝜃)P(Y ∣ 𝜃)

with P(𝜃)P(𝑌 |𝜃) the unormalised posterior density and:

P(Y) = ∫ P(𝜃)P(Y ∣ 𝜃) 𝑑𝜃

The prior distribution P(𝜃) expresses the available parameter information without knowing the observed
data, while the posterior distribution P(𝜃 ∣ Y) combines this prior information (which may be more or
less informative depending on what is known about the value of the parameters beforehand) with evidence
from the data (expressed through the likelihood) into a posterior density probability distribution for the
parameters. The overall expectation is to get a narrower posterior distribution compared to the prior
one: the difference between the two distributions reflects the information provided by the data. When
the non-informative prior is vague (translated into a flat uniform distribution), and the data sufficiently
informative, the results are similar to those obtained by the frequentist approach.

Joint posterior distribution
The joint posterior distribution has the dimension of the number of parameters times the number of iterations
within the MCMC chains, and it can be plotted in planes of parameter pairs to visualise correlations
between parameters. In an example case with two binormally distributed parameters, the joint posterior
distribution can be plotted in the 2D-parameter space as illustrated by ellipses on Fig. 1; in this example,
parameters 𝜃1 and 𝜃2 appear slightly correlated. From the joint posterior distribution, the marginal
posterior distributions for each parameter (as illustrated by grey normal distributions on bottom and left
sides of Fig. 1) can be extracted. Then, from the marginal posterior distributions, some statistical
summaries on parameter estimates can be extracted, usually the median (illustrated by vertical and
horizontal plain grey lines on Fig. 1) as well as 2.5% and 97.5% quantiles to serve as 95% credible intervals
(illustrated by vertical and horizontal dotted grey lines on Fig. 1). Another advantage of having the
joint posterior distribution is that any posterior distribution of any function of the parameters can be obtained.

Parameter uncertainties
One implication of adopting a Bayesian approach is that the uncertainty on a parameter is expressed as a
probability distribution from which a credible interval (also called a Bayesian confidence interval) can be
extracted. For example, the 95% credible interval delimits a range of values where the parameters should
lie with a 95% probability, whereas the calculation of a confidence interval used in a frequentist approach
(usually a 95% confidence interval) is based on hypothetical repeated sampling from the model: if samples of
the same population size are repeatedly obtained and a 95% confidence interval for each of the samples is
calculated, it is expected that 95% of the confidence intervals will contain the true value of the parameter.
Another key point is that the credible interval is conditional to the data used to estimate the parameters.

Numerical computation
Many numerical methods have been developed to approximately compute the posterior distribution in
challenging cases, mainly based on simulations by Monte Carlo Markov Chain (MCMC) sampling methods
used to generate random numbers from complex joint distributions. MCMC algorithms are a general method
based on drawing values of parameter vector 𝜃 from approximate distributions and then correcting those
draws to better approximate the target posterior distribution P(𝜃 ∣ 𝑌 ). The sampling is done sequentially,
with the distribution of the sampled draws depending only on the last value drawn; hence, the draws form a
Markov Chain. The key to the method success, however, is not the Markov property but rather the fact that
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Figure 1. Theoretical binormal joint posterior distribution of parameter vector (𝜃1, 𝜃2). Ellipses correspond
to isoclines of the joint posterior distribution; grey distributions are marginal posterior distributions of both
parameters; solid horizontal and vertical lines correspond to the medians of these marginal distributions;
dashed horizontal and vertical lines correspond to the 2.5% and 97.5% quantiles of the marginal distributions.

the approximate distributions are improved at each step of the simulation, in the sense it finally converges to
the target posterior distribution after an enough number of iterations. Indeed, with such algorithms, the
simulation process must run long enough so that the distribution of the current draws is close enough to the
desired target posterior distribution.
MCMC algorithms use random walk algorithms. Among them, the Metropolis algorithm (and its generalisa-
tion, the Metropolis–Hasting algorithm) is an adaptation of a random walk with an acceptance/rejection
rule to converge to the specified target distribution2,3. The Gibbs sampler is a special case of the
Metropolis–Hastings algorithm applicable when the joint distribution is not known explicitly, or where it is
difficult to directly sample from, while the conditional distribution of each parameter is known and it is easy
(or at least, easier) to sample from4.
Several tools are available to automatically perform these computations. In MOSAICgrowth, JAGS5 (version
4.3.0. (2017-08-10)) and R software6 (version 4.0.2 (2020-06-22)) are used. The models are fitted to growth
data using Bayesian inference via Monte Carlo Markov Chain (MCMC) sampling based on a Gibbs-type
algorithm. For each model, we start by running a short sampling with three chains (5,000 iterations after a
burn-in phase of 10,000 iterations) using the Raftery and Lewis7 method to set the necessary thinning and
number of iterations to reach an accurate estimation of the joint posterior distribution.

1.4 Choice of prior distributions
In MOSAICgrowth, prior choice is hidden to the user. However, here we give some information to help the user
to understand the model behind. Before conducting an experimental study, prior distributions are defined for
each parameter according to information available from the literature and/or previous experiments. Depending
on the sources where the information come from, informative, semi-informative or non-informative prior distri-
bution can be used. If a parameter was already estimated in previous studies or if previous data are available,
a prior distribution can easily be characterized with an appropriate probability distribution. However, if no
information is available but an order of magnitude is (positive only, for example), it is possible to use a weakly
informative prior. If any information is available on the order of magnitude of a parameter, its prior can be de-
fined on a decimal logarithm scale in order to consider with equal probability both low or high expected values.

As MOSAICgrowth application has to be the most generic as possible, priors were assumed to be
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as follows:

• Quasi-non-informative for parameter 𝑏:

𝑙𝑜𝑔10𝑏 ∼ 𝒰(−2, 2)

• Uniform on parameter 𝑑 with the following bounds:

𝑑 ∼ 𝒰(0, 2 × 𝑚𝑎𝑥𝑌 )

where 𝑚𝑎𝑥𝑌 equals the highest observed 𝑌 for the species under consideration so that this observation is
excluded from the data for the analysis.

• For parameter 𝑒, we assume that the range of tested concentrations / rates in experiment is chosen to
contain the ER50 with a high probability. Hence we use a normal prior distribution for parameter 𝑒 as
follows:

𝑙𝑜𝑔10𝑒 ∼ 𝒩(𝑙𝑜𝑔10(𝑚𝑎𝑥𝑋) + 𝑙𝑜𝑔10(𝑚𝑖𝑛𝑋)
2

, 𝑙𝑜𝑔10(𝑚𝑎𝑥𝑋) − 𝑙𝑜𝑔10(𝑚𝑖𝑛𝑋)
4

)

where 𝑚𝑖𝑛𝑋 and 𝑚𝑎𝑥𝑋 are the smallest and the highest tested concentrations / rates, respectively.

• The prior distribution on parameter 𝜎 is chosen as follows:

𝜎 ∼ 𝒰(0, 𝑚𝑎𝑥𝑌 )

where 𝑚𝑎𝑥𝑌 is the same as defined above.
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2 Options of censoring on EC𝑥/ER𝑥 to account for the uncertainty
Under the Bayesian framework, we get a posterior probability distribution of the EC𝑥/ER𝑥 (see example in
Fig. 2. A) quantifying the uncertainty of the EC𝑥/ER𝑥 that can be summarized as a median and a 95%
credible interval (CI95), representing the range of values within which the EC𝑥/ER𝑥 has 95% of chance to lie.

This uncertainty on the EC𝑥/ER𝑥 can then be used to adequately censor these values if required for future
SSD analyses. A key question to consider is the CI95 of the EC𝑥/ER𝑥 estimate always precise enough to be
used as it is or regarding the range of tested concentrations / rates, should we have to right-censor it? In
practice, we assume that the true EC𝑥/ER𝑥 value has 95% of chance to be greater than the lowest bound
of the CI95 (LCI95), depending on the relative position of 𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 compared to the LCI95. Hence, we
propose a criterion based on the following ratio of probabilities:

𝑟𝑎𝑡𝑖𝑜 = 𝑃(𝐿𝐶𝐼95 ≤ 𝐸𝑅𝑥 ≤ 𝑚𝑎𝑥_𝑟𝑎𝑡𝑒)
𝑃 (𝐿𝐶𝐼95 ≤ 𝐸𝑅𝑥 ≤ 𝑈𝐶𝐼95)

This is the ratio of the probability that the EC𝑥/ER𝑥 lies within LCI95 and 𝑚𝑎𝑥_𝑟𝑎𝑡𝑒 over the probability
that the EC𝑥/ER𝑥 lies within its CI95 (this latter equals 95%); based on Fig. 2. B, this criterion is
calculated as the ratio of the orange surface divided by the (orange + grey) surface.
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Figure 2. Options of censoring on ER𝑥 to account for the uncertainty: (A) posterior distribution of ER𝑥,
(B) ratio of probabilities.

If the calculated ratio is greater than a given threshold 𝑇 chosen to be equal to 0.5, we keep an interval-censored
EC𝑥/ER𝑥 corresponding to the whole CI95; otherwise, we consider a right-censored EC𝑥/ER𝑥 with a lower
bound being the minimum between the lower bound of the CI95 and the maximum tested rate (max_rate):

censored 𝐸𝐶𝑥/𝐸𝑅𝑥 = { [𝐿𝐶𝐼95, 𝑈𝐶𝐼95] ratio > 𝑇
[𝑚𝑖𝑛(𝐿𝐶𝐼95, 𝑚𝑎𝑥_𝑟𝑎𝑡𝑒), +∞) ratio ≤ 𝑇
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